Latent Gaussian Process for data-driven disease stratification with composite likelihoods

Siddharth Ramchandran¹ Miika Koskinen^{2*} Harri Lähdesmäki^{1*}

<u>1 - Dept. Of Computer Science, Aalto University</u> 2 - HUS / Helsinki Biobank

What are we trying to do?

- Trying to understand patient records from several disparate sources (observation spaces/different likelihoods).
- Our method seeks to embed these observations in a low dimensional space while capturing the similarities between the observations.

How to handle different likelihoods and high dimensionality?

0, 1, 1, 0, 0, -0.5, 1.9, 0.23, 0.1, 0.2 1, 1, 1, 0, 0, 1.2, 2.3, 1.2, 0.8, 0.87 0, 0, 0, 0, 0, 1.3, -0.1, Null, 0.2, 0.3

1, 0, 0, 1, 1, 1.5, 2.4, 1.5, 0.9, 0.22

Patient records comprising of Binomial, Gaussian and Beta distributed data and missing values

Latent space with novel clustering among patients (can be of higher dimension)

How?

- Modify the Gaussian Process Latent Variable Model (GP-LVM) to learn a shared latent representation from the different observation spaces.
- Model the different observation spaces as generative models from a shared low dimensional latent representation.

What is a GP-LVM?

 A probabilistic and non-linear embedding of data in a lower dimensional parameters are optimised.

IN A NUT SHELL

space, where the latent variables are integrated out and the other hyper

How to handle different likelihoods?

 Our model can handle data that comprises of different likelihoods like Binomial, Gaussian, Beta and Poisson (for now).

CHALLENGE

We learn the distribution parameters as follows:

 $\mathcal{F} \sim GP(K)$ $f = \mathcal{F}(x)$ $y \sim distribution(f)$

Intractable likelihood

Inference and Optimisation

- We make use of sampling-based variational inference to overcome the intractability.
- Obtain a lower bound on the log-evidence (ELBO).
- Compute gradients of the lower bound with Monte Carlo estimates.
- Use RMSProp optimiser to find an optimal variational distribution.

Data from

Results on Parkinson's disease data

Thank You

See you at the poster session

HUS

HELSINGIN **BIOPANKKI** HELSINGFORS **BIOBANK** HELSINKI **BIOBANK**

