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 How to handle different likelihoods  
and high dimensionality?

CHALLENGE

• Trying to understand patient records from several disparate sources 
(observation spaces/different likelihoods).


• Our method seeks to embed these observations in a low dimensional 
space while capturing the similarities between the observations.
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What are we trying to do?
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Patient records comprising 
of Binomial, Gaussian and 
Beta distributed data and 
missing values

Latent space with novel 

clustering among patients

(can be of higher dimension)

 0, 1, 1, 0, 0, -0.5, 1.9, 0.23, 0.1, 0.2 
1, 1, 1, 0, 0, 1.2, 2.3, 1.2, 0.8, 0.87 

 0, 0, 0, 0, 0, 1.3, -0.1, Null, 0.2, 0.3 
…. 

1, 0, 0, 1, 1, 1.5, 2.4, 1.5, 0.9, 0.22

OUR METHOD



• Modify the Gaussian Process 
Latent Variable Model (GP-
LVM) to learn a shared latent 
representation from the 
different observation spaces.


• Model the different 
observation spaces as 
generative models from a 
shared low dimensional latent 
representation.
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How?



 IN A NUT SHELL

• A probabilistic and non-linear embedding of data in a lower dimensional 
space, where the latent variables are integrated out and the other hyper 
parameters are optimised.
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What is a GP-LVM?

y = g(x) + ϵ
Data Gaussian


Process
Latent

variables

Noise



• Our model can handle data that 
comprises of different likelihoods 
like Binomial, Gaussian, Beta and 
Poisson (for now).
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How to handle 
different likelihoods?

ℱ ∼ GP(K)
f = ℱ(x)
y ∼ distribution( f )

We learn the distribution 
parameters as follows:

 Intractable likelihoodCHALLENGE



• We make use of sampling-based 
variational inference to overcome the 
intractability.


• Obtain a lower bound on the               
log-evidence (ELBO).


• Compute gradients of the lower bound 
with Monte Carlo estimates.


• Use RMSProp optimiser to find an 
optimal variational distribution.
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Inference and Optimisation
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Demonstration on Clinical data 
of Parkinson’s disease

2200
Data from 

patients with

117 covariates

1 binary variables

26 binary variables

 disease identification codes

indicating gender

90 gaussian variables
laboratory data
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Results on Parkinson’s disease data



Thank You.
 See you at the poster session
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