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What is a generative model?

capture the joint probability 
 or  if there are no 

labels
p(X, Y) p(X)
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capture the conditional 
probability  p(Y |X)

Generative models Discriminative models

Given a dataset , and associated labels :  X Y

use probabilistic modelling to 
understand data generating 
mechanisms

used to differentiate between 
different kinds of instances.



What is a generative model?
Generative models tackle a much harder challenge.
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Cats from a model that generates convincing “fake” data 
(Karras et. al, 2019) 

Pair of eyes on the forehead

Pair of ears

Nose between eyes
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Generative vs. 
Discriminative

Discriminative models try to 
learn the boundary in the data 
space (i.e. discriminate) 

siddharth.ramchandran@aalto.fi 

Generative models try to 
“learn” the data in order to be 
able to replicate it.

Healthy

Sick

Healthy

Sick

Discriminative model

Generative model
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Unsupervised learning

It tries to find interesting 
patterns/transformations of 
input data without target labels. 
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In other words, dataset  is 
given, but labels  are not.

X
Y

We try to model .p(X)
Dataset X Are there any patterns?
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What is biomedical data?
It comprises of observations of one or more variables of a 
patient or a sample of individuals which represent a population 
of interest. 
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Some analysis have an outcome variable (or response variable) 
which defines the termination of the analysis. 

The attributes or variables can be quantitative (discrete 
and continuous) or qualitative (nominal and ordinal)

Biomedical data is characterised by high-dimensionality 
and missing values.
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Contents of biomedical data

 Patient information: date of birth, sex, 
date of study entry/exit 
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Routine medical data: height, weight, 
blood pressure, cholesterol levels, 
medications used 

Specialised laboratory data: proteins, 
lipids, metabolites, glycans, imaging. 
omics data such proteomics and 
metabolomics 

Genetic data: genotype or sequencing.  
Gene expressions and epigenetic data 
(DNA methylation).
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Examples of biomedical data
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MIMIC-III collection: a freely-accessible critical care database.

Biobank data: such as Helsinki Biobank and UK Biobank

Anonymised health data associated with 61,532 ICU admissions. 

Demographics, vital signs, laboratory tests, medications, and more. 

Genomics, demographics, chromosomes and patient electronic health records.  

The objectives can be, for example, disease stratification and temporal modelling.



What can the models 
be used for?
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Data imputation

Most longitudinal datasets 
comprise of a significant 
number of missing values.  

Make use of past and 
future information into 
account when predicting 
missing values
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Patient 1 ? 0.21 0.88 1

Patient 2 0.12 ? 0.45 2.5

Patient 1 0.44 ? 0.67 4

Patient 1 0.56 0.234 ? 5
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Down-stream tasks

Perform disease stratification by 
identifying clusters (or disease sub-
types) among patients. 

Perform classification. For example, 
identifying patient mortality or 
early detection of sepsis. 

Identify time windows of interest. 
For example, identification of pre-
septic shock period. 
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ML METHOD

DISEASE SUBGROUPS

CLINICAL DATA

0, 1, 1, 0, 0,     -0.5, 1.9, 0.23,       0.1, 0.2 
1, 1, 1, 0, 0,      1.2, 2.3,1.2,           0.8, 0.87 
0, 0, 0, 0, 0,      1.3, -0.1,Null,        0.2, 0.3
....
1, 0, 0, 1, 1,      1.5, 2.4, 1.5,          0.9, 0.22

IDENTIFICATION OF
PRE-SHOCK WINDOW
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We can model the non-linear 
evolution of a patient’s health. 

Think of the generated low-
dimensional representation as 
a latent physiological state of 
the patient with the original 
data space as the observable 
measurements
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Disease progression

-2 -1 0 1

Z

Data 
space
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Popular DL models for 
generative modelling

Auto Encoders                   
(This lecture.) 

Used for dimensionality 
reduction, data 
imputation, drug 
discovery, etc.
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Generative 
Adversarial Networks 

Used mainly for generative 
tasks such as image 
generation, data generation, 
etc. 

Gaussian Process 
Latent Variable 
Models 

Similar applications as 
auto encoders. 
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Generative Adversarial 
Network

GANs are a popular adversarial 
technique. 

The generator learns to generate 
plausible data. 

The discriminator tries to 
distinguish the generator’s fake 
data from the real data. Penalises 
generator for producing 
implausible results. 
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Real 
images

Sample

Generator
(fake images)

Samplerandom
input

Discriminator

Discriminator
loss

Generator
loss

Optimise loss
Weights learnt by computing

gradients w.r.t. loss and 
backpropogation
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Gaussian Process  
Latent Variable Model

Learns a low-dimensional latent 
representation, . 

It is a special case of PPCA where 
output dimensions are linear and 
i.i.d.  

GPLVM removes assumptions of 
linearity. 

Originally for Gaussian distributed 
data. Extension proposed for 
multi-likelihood setting.

Z
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fn

xn

z
0

ε n

N



Latent modelling - learning low 
dimensional representations
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Recap - Principal 
Component Analysis

A popular technique for linear 
dimensionality reduction. 

Projects a number of possibly 
correlated variables into a smaller 
number of uncorrelated variables 
(principal components).  

where is the matrix 
of eigenvectors sorted in 
decreasing order of eigenvalues.  

X* = XP * P *
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PCA

Not probabilistic as it has no 
likelihood model

Computationally intensive

Does not handle missing values 
properly

Not robust to outliers

Figure modified from (Lever et al. 2019)



Input Layer

Input #1

Input #2

Input #3

Input #4

Hidden Layer 1 Output Layer

Output

Hidden Layer 2
Recap - Artificial 
Neural Networks

A Multi-Layered perceptron is one 
of the simplest forms of an 
Artificial Neural Network. 

The forward pass refers to the 
computation of the output given 
the input and weights. 

Need to learn the weights given 
training examples (i.e. train the 
network). 
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Architecture of simple Multi-Layered Perceptron

x5

x1

x2

f�

w1

w2

w5

y1

y = f(x ⋅ w) = f(
N

∑
i=1

xi ⋅ wi)



Learning the weights 
of a MLP

Backpropagation with gradient 
descent is the key ingredient in 
deep learning. 

The learning is repeated over 
several iterations or epochs. 

Training once the loss function 
does not decrease further (appears 
to have converged). However, 
learning is not necessarily 
complete. 
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Initialise the weights for all nodes 

Perform a forward pass for each training example using the current weights.

Output from last node is the final output.

Compare the final output and the actual target by measuring the error using

a loss function

Perform a backwards pass from right to left and propagate the error to every

individual node using backpropagation.

Calculate each weight’s contribution to the error, and adjust the weights

accordingly using gradient descent.

Propagate the error gradients back starting from the last layer.
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An ANN that learns to copy its input 
to the output. It has an internal 
latent layer (code) that can act as an 
information bottleneck. 

The latent space preserves only the 
most relevant aspects of the data. 

The reconstruction error (loss) is 
minimised by gradient descent over 
the parameters of the two neural 
networks (i.e. Backpropagation of 
the error). 
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The Autoencoder
Input Layer

Input #1

Input #2

Input #3

Input #N

Latent space Output Layer

Reconstruction #1

Reconstruction #2

Reconstruction #3

Reconstruction #N

Encoder Decoder

z

X

Φψ

C
ode

X’

Loss = || X - X’ ||2 = || X - d(Z) ||2 = || X - d(e(X)) ||2
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Vanilla Autoencoders are not 
enough …
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Autoencoders are great because:

However, we can do better:

Explore variations of existing data in a desired way by exploring the latent space. Hard to 
use the decoder for generative purposes. 

The latent space of vanilla Autoencoders may not be continuous or allow easy 
interpolation. There is a lack of structure in the latent space.

Identifies compact representations and reconstruct their inputs well. 

Fast to train and are a simple concept that leverages the power of DL.



Irregular vs. Regular 
latent space

Continuity: two points that are 
close in the latent space do not 
give completely dissimilar 
reconstructions. 

Completeness: a point sampled 
from the latent space should give 
meaningful content once decoded. 
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Points that are close in latent

space but are dissimilar when decoded.
Meaningless reconstruction

Points that are close in latent

space but are similar when decoded.

Irregular 
latent space 
(overfit)

Regular 
latent 
space
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The Variational 
Autoencoder

An input is encoded as a 
distribution over the latent space 
instead of a single point. 

The training (i.e. the mean and 
covariance) is regularised to avoid 
overfitting. 

The encoded distributions are 
Gaussians. Hence, the encoder 
returns the mean and covariance 
matrix that describes the Gaussians. 
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Input Layer

Input #1

Input #2

Input #3

Input #4

Latent space Output Layer

Reconstruction #1

Reconstruction #2

Reconstruction #3

Reconstruction #4

μ

σ

Encoder Decoder

z

X

Φψ

X’

input latent 
distribution 

sampled latent 
representation reconstruction 

X p(Z |X) z ∼ p(Z |X) x′� = d(z)

encode sample decode
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The latent space is regularised by 
forcing the distributions returned 
by the encoder to be close to the 
standard normal distribution 
(regularisation term). 

Meanwhile, the reconstruction term 
encourages better reconstruction 
performance. 

The regularisation term is vital to 
obtain continuity and 
completeness.  
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The regularised loss

Loss = | |X − d(e(X)) | |2 + KL(q(z |y) | |p(z))

Reconstruction loss Regularisation term

𝒩(μ, σ2)
(from encoder)

𝒩(0,I)

siddharth.ramchandran@aalto.fi 
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A statistical view of VAEs: 
Variational Inference

Variational inference is a technique 
to approximate complex 
distributions.  

Makes use of the Kullback-Leibler 
divergence between an 
approximation and target to choose 
the best from a family of 
approximations. 

Best approximation found by 
gradient descent over the 
parameters that describe the family.  
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Z1

Z2
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Variational inference in 
VAEs

We approximate  with a Gaussian 
distribution,  whose mean and 
covariance are from the encoder neural 
network (  as this amortised V.I.) 

Recall that  and  corresponds to the 
encoder weights and decoder weights.  

Makes use of the reparametrisation trick: 
 where     

 

p(Z |X)
qψ(Z)

qψ(Z |X)

ψ Φ

z = μψ(x) + ϵσ2
ψ(X) ϵ ∼ 𝒩(0,I)
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qψ(Z) = 𝒩(μψ(X), σ2
ψ(X))

(μ*ψ , σ2*
ψ , ψ*, Φ*) = arg minμψ,σ2

ψ,ψ,ΦKL(qψ(Z) | |p(Z |X))

= arg minμψ,σ2
ψ,ψ(𝔼z∼qψ

(log qψ(z)) − 𝔼z∼qψ
(log

p(x |z)p(z)
p(x)

))

= arg minμψ,σ2
ψ,ψ(𝔼z∼qψ

(log qψ(z)) − 𝔼z∼qψ
(log p(z)) − 𝔼z∼qψ

(log p(x |z)) + 𝔼z∼qψ
(log p(x))

= arg maxμψ,σ2
ψ,ψ(𝔼z∼qψ

[log p(x |z)] − KL(qψ(z) | |p(z)))

Minimise KL divergence between approximate and target distribution:

approximation target

The KL divergence can be re-written as:

Baye’s theorem on p(Z |X )

Expanding above:

Using the KL definition:

Using reparameterisation trick

Regularisation termReconstruction loss (-MSE)



Recent advancements 
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Traditional VAEs do not handle 
heterogeneous (different 
likelihoods) or missing data. 

A VAE assumes that the data is 
Gaussian distributed. 

HI-VAE includes likelihood models 
for real-valued data, count data, 
categorical data, and ordinal data. 

Incomplete data is handled by 
input drop-out recognition 
distribution. 
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Handling incomplete 
heterogeneous data using 
VAEs  

APPLICATIONSCLINICAL DATA

Patient records comprising of 
Binomial, Gaussian and Beta 
distributed data and missing values.

0, 1, 1, 0, 0,     -0.5, 1.9, 0.23,       0.1, 0.2 
1, 1, 1, 0, 0,      1.2, 2.3,1.2,           0.8, 0.87 
0, 0, 0, 0, 0,      1.3, -0.1,Null,        0.2, 0.3
....
1, 0, 0, 1, 1,      1.5, 2.4, 1.5,          0.9, 0.22

HI-VAE
Missing value imputation

Downstream classification
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HI-VAE: Heterogeneous 
data

Accommodate a variety of likelihood 
models - one per attribute. 

A deep neural network (the decoder) 
, models the likelihood 

parameters   

Assumes a factorised decoder for 
simplicity.

hd( ⋅ )
γnd
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p(xn, zn) = p(zn)∏
d

p(xnd |zn)

Factorised decoder:

The generative model:

p(xnd |zn) = p(xnd |γnd = hd(zn))

Every likelihood model can be written as:

Gaussian likelihood model:
γnd = {μd(zn), σ2

d(zn)}

p(xnd |γnd) = 𝒩(μd(zn), σ2
d(zn))

From neural network

p(xnd |γnd) = Poiss(λd(zn))

Poisson likelihood model:
γnd = λd(zn)

From neural network

Mean parameter



I

HI-VAE: Incomplete data

The recognition model needs to be  
flexible enough to handle any 
combination of observed and missing 
attributes.  

The distribution of latent variables  
depends only on the observed 
attributes . 

The loss is only computed over the 
observed data. 

zn

xo
n
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p(xn, zn) = p(zn)∏
d

p(xnd |zn)

Factorised decoder:

Separating the contributions:

The recognition model:

p(xn |zn) = ∏
d∈𝒪n

p(xnd |zn) ∏
d∈ℳn

p(xnd |zn)

Observed data Missing data

q(zn, xm
n |xo

n) = q(zn |xo
n) ∏

d∈ℳn

p(xnd |zn)

Input drop-out recognition distribution:

q(zn |xo
n) = 𝒩(μq(x̃n), Σq(x̃n))

From deep neural network (encoder)

 resembles the original observed , but missing

dimensions are replaced by zeros.  
x̃n xn
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An Illustrative example

Latent space learnt using a similar 
method from (Ramchandran et. al, 
2019). 

Cluster labels identified using 
Bayesian GMM in a latent space with 
8 dimensions. 

Projected on to a 2 dimensional 
space using UMAP.
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Parkinson's data from the Helsinki Biobank
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VAEs have been described for i.i.d 
datapoint with missing values. 

We can create low-dimensional 
representations of high-dimensional  
time series that evolves smoothly 
over time according to a Gaussian 
process. 

This can be used for reliable 
dimensionality reduction and data 
imputation.  
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What about time series 
data? 

Input Layer

Input #1

Input #2

Input #3

Input #4

Latent space Output Layer

Reconstruction #1

Reconstruction #2

Reconstruction #3

Reconstruction #4

GP prior over time points

Z

zi ∼ (0,KTT(θ))

Laboratory results
and

other measurements

Encoder Decoder

siddharth.ramchandran@aalto.fi 
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Make use of a Gaussian process 
instead of a standard normal 
distribution as the prior on the 
latent space.  

Model temporal correlations in the 
reduced representation using a GP. 
This decouples the handling of 
missing values from instantaneous 
correlations between the different 
feature dimensions  

Kernel computed over time (age or 
time to disease). 
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Gaussian process prior 
VAE 

Loss = 𝔼z∼qψ
[log p(x |z)] − KL(qψ(z) | |p(z))

From the vanilla VAE (loss to maximise):

Replace with Gaussian 
process prior.

p(Z |θ) = ΠL
i=1𝒩(zl |0,KTT(θ))

Replacing the prior with a GP prior computed over time:

Squared exponential 
kernel

 corresponds to the GP hyper-parameters.θ

siddharth.ramchandran@aalto.fi 
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Single-cell variational 
inference

ScVI is a fully probabilistic approach for 
the normalisation and analysis of scRNA-
seq data. scRNA-seq can measure gene 
expression levels for each cell in a 
sample. 

Each cell is represented as a point in a 
low-dimensional latent space that can be 
used for visualisations and clustering. 

It is based on a hierarchical Bayesian 
model with the conditional distributions 
specified by deep neural networks. 

Explicitly models 2 key nuisance 
factors: library size and batch effects.

From each gene  
and each cell 

g
n

Figure modified from (Lopez et al. 2019)

Each  modelled as a sample 
drawn from a zero-inflated 
negative binomial (ZINB) 

distribution

xng

Maps the latent 
variables to the


parameters of the 
ZINB distribution


(decoder)

An approximation of the 
posterior distribution for the 

latent variables

(encoder)

ZINB combines the negative 
binomial distribution and the logit 
distribution.  
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An illustrative example
Distance matrices Latent embeddings

Figure from (Lopez et al. 2019)

(random Gaussian noise)
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Useful resources 
Introduction to biomedical data: https://pm2.phs.ed.ac.uk/BDS/lecture01.pdf 

Artificial neural networks: https://towardsdatascience.com/applied-deep-learning-part-1-
artificial-neural-networks-d7834f67a4f6 

Generative modelling: https://towardsdatascience.com/generative-deep-learning-lets-seek-
how-ai-extending-not-replacing-creative-process-fded15b0561b 

GANs: https://developers.google.com/machine-learning/gan 

VAEs: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73 

Variational Bayes: https://people.csail.mit.edu/tbroderick/tutorial_2018_icml.html
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https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/generative-deep-learning-lets-seek-how-ai-extending-not-replacing-creative-process-fded15b0561b
https://towardsdatascience.com/generative-deep-learning-lets-seek-how-ai-extending-not-replacing-creative-process-fded15b0561b
https://developers.google.com/machine-learning/gan
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://people.csail.mit.edu/tbroderick/tutorial_2018_icml.html
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Some visual assets are from flaticon (https://www.flaticon.com) and unDraw (https://undraw.co).
siddharth.ramchandran@aalto.fi 

https://www.flaticon.com
https://undraw.co
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Thank You.
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Questions?
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